Generalized polynomial bases and the Bezoutian
نویسندگان
چکیده
منابع مشابه
Generalized Polynomial Bases and the Bezoutian
A foundation polynomial is used to induce polynomial bases for F n?1 x], the vector space of polynomials of degree less than n over an arbitrary eld F. The associated bases are then used to block diagonalize the Bezout matrix of two polynomials under congruence.
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملNumerical Computation of Minimal Polynomial Bases: A Generalized Resultant Approach
We propose a new algorithm for the computation of a minimal polynomial basis of the left kernel of a given polynomial matrix F (s): The proposed method exploits the structure of the left null space of generalized Wolovich or Sylvester resultants to compute row polynomial vectors that form a minimal polynomial basis of left kernel of the given polynomial matrix. The entire procedure can be imple...
متن کاملSIGNED GENERALIZED PETERSEN GRAPH AND ITS CHARACTERISTIC POLYNOMIAL
Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.
متن کاملOn the generalized Ball bases
The Ball basis was introduced for cubic polynomials by Ball, and two different generalizations for higher degree m polynomials have been called the Said–Ball and the Wang–Ball basis, respectively. In this paper, we analyze some shape preserving and stability properties of these bases. We prove that the Wang–Ball basis is strictly monotonicity preserving for all m. However, it is not geometrical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00585-4